Nucleotide sequence variation of chitin synthase genes among ectomycorrhizal fungi and its potential use in taxonomy.

نویسندگان

  • B Mehmann
  • I Brunner
  • G H Braus
چکیده

DNA sequences of single-copy genes coding for chitin synthases (UDP-N-acetyl-D-glucosamine:chitin 4-beta-N-acetylglucosaminyltransferase; EC 2.4.1.16) were used to characterize ectomycorrhizal fungi. Degenerate primers deduced from short, completely conserved amino acid stretches flanking a region of about 200 amino acids of zymogenic chitin synthases allowed the amplification of DNA fragments of several members of this gene family. Different DNA band patterns were obtained from basidiomycetes because of variation in the number and length of amplified fragments. Cloning and sequencing of the most prominent DNA fragments revealed that these differences were due to various introns at conserved positions. The presence of introns in basidiomycetous fungi therefore has a potential use in identification of genera by analyzing PCR-generated DNA fragment patterns. Analyses of the nucleotide sequences of cloned fragments revealed variations in nucleotide sequences from 4 to 45%. By comparison of the deduced amino acid sequences, the majority of the DNA fragments were identified as members of genes for chitin synthase class II. The deduced amino acid sequences from species of the same genus differed only in one amino acid residue, whereas identity between the amino acid sequences of ascomycetous and basidiomycetous fungi within the same taxonomic class was found to be approximately 43 to 66%. Phylogenetic analysis of the amino acid sequence of class II chitin synthase-encoding gene fragments by using parsimony confirmed the current taxonomic groupings. In addition, our data revealed a fourth class of putative zymogenic chitin synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitin synthase homologs in three ectomycorrhizal truffles.

Degenerate PCR primers were used to amplify a conserved gene portion coding chitin synthase from genomic DNA of six species of ectomycorrhizal truffles. DNA was extracted from both hypogeous fruitbodies and in vitro growing mycelium of Tuber borchii. A single fragment of about 600 bp was amplified for each species. The amplification products from Tuber magnatum, T. borchii and T. ferrugineum we...

متن کامل

Study of ectomycorrhizal fungi with beech trees in highland beech forests (Farim, Mazandaran province)

In this study, the ectomycorhizal fungi from beech trees in highland beech forests of Farim (Mazandaran province) were identified based on extraction of DNA from roots and sequencing the ITS region of nuclear ribosomal DNA. For this purpose, in the altitude of 1500-2100 meters A.S.L, 30 plot and one plant per each plot were selected randomly and samples were taken from roots in depths of 10 cm ...

متن کامل

Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation.

Fungal chitin synthases are classified into seven classes. Recent advances in genome sequence analyses have revealed that there are more than seven chitin synthase-encoding genes in the genome of filamentous ascomycete fungi. To clarify the functional differences among these genes in the morphogenesis and hyphal tip growth, we have cloned six chitin synthase-encoding genes from Aspergillus nidu...

متن کامل

Antifungal Activity of Soil Chitinolytic Bacilli

Abstract Background and Objective: Chitin, which is a linear polymer of N-acetyl glucosamine residues, has been the most abundant polymer in nature after cellulose. In recent decades, Chitinases have received increased attention because of their wide range of applications, especially in biological control against fungi. Material and Methods: the isolation of bacilli producing chitinolyti...

متن کامل

Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus.

Ectomycorrhizae are formed by mutualistic interactions between fungi and the roots of woody plants. During symbiosis the two organisms exchange carbon and nutrients in a specific tissue that is formed at the contact between a compatible fungus and plant. There is considerable variation in the degree of host specificity among species and strains of ectomycorrhizal fungi. In this study, we have f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 60 9  شماره 

صفحات  -

تاریخ انتشار 1994